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Abstract 

Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants in aquatic 

environment. Benzo[a]pyrene (B[a]P) is one of the prototypes of PAHs which is formed during 

the incomplete burning of organic materials. High-performance liquid chromatography 

(HPLC) and Gas chromatography mass spectrometry (GC-MS) are the appropriate tool to 

assess B[a]P concentration in fish. This study reveals that the B[a]P accumulation in fish which 

alters ROS formation, antioxidants activity, MN induction, histological lesions, and molecular 

mechanisms. 
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Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are universal pollutants in aquatic habitats. 

The major portion of PAHs arrives into water bodies from land-based runoff or atmospheric 

deposition. Though PAH levels deteriorated in urban watersheds from 1970s to 1980s because 

of decrement in coal burning and industrial discharges (Guntupalli et al., 2016; Parmar et al., 

2020; Yuan et al., 2021). But the last time period has formed new increases in PAH 

accumulation in aquatic organisms due to automobile practice linked through urban extension 

(Saha et al., 2009) or diesel burning by heavyweight vehicles (Baum et al., 2016). Furthermore,  
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new studies address that petroleum hydrocarbons produced from oil spills can easily persist in 

aquatic sediments, plants and animals for years or longer (Vanzella et al., 2007).  

 
Figure 1: B[a]P as a toxic substance. 

B[a]P is one of the carcinogenic petroleum chemicals with two or more fused aromatic 

rings which is widely dispersed in the environment (Harris et al., 2020). The production or 

utilization of B[a]P is not done commercially, but is generally available in the environment. It 

is formed primarily as outcome of pyrolytic events, particularly the incomplete incineration of 

organic resources in industrial and various human actions like processing of crude oil and coal, 

ignition of natural gas for culinary and wood burning (Hamilton et al., 2021; IARC, 2014; Le 

Bihanic et al., 2014). Additional human actions that result in B[a]P release include the garbage 

burning, road traffic by vehicles, tobacco and cigarette smoking, and ingestion of charcoal 

roasted and smoked foods (Ramesh and Archibong, 2011; Sen and Field, 2013). B[a]P binds 

to small elements in the air and is easily diffused into the environment through the air. B[a]P 

can then be inhaled or deposited in the environment on plants, soil, and water bodies (Guo et 

al., 2021; Jabeen et al., 1234; WHO, 2003). Aquatic animals and plants may then come in 

contact with B[a]P. B[a]P, and its metabolites can persist in the aquatic environment for many 

years. After the exposure of B[a]P in the residues of ponds, lakes, and waterways, it 

accumulates in the organs of aquatic invertebrates and vertebrates (Batel et al., 2018; Fanali et 

al., 2018; Huang et al., 2014). Like other PAHs, B[a]P is mainly toxic to aquatic organism in 

the occurrence of UV light, increasing health risk to the animals in unshaded or shallow 

environments (Sen and Field, 2013).  

Fishes eagerly take up lipophilic organic substances such as B[a]P from the aquatic 

environment, with various physiological, cellular and molecular effects (Albornoz-Abud et al., 

2021; Honda and Suzuki, 2020). Fish are able to break down xenobiotics, so there is little 
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accumulation of B[a]P in fish (Scott and Jones, 2000). However, B[a]P acts as a genotoxicant 

in aquatic organisms, causing many biochemical changes most studied in fish, and the studies 

on effects of B[a]P on physiological perturbations of fish are comparatively limited. 

Furthermore, studies are needed to explore the toxic effects of B[a]P in fish.  

The quantification of physiological, biochemical, and molecular constraints is a 

diagnostic implement regularly used in aquatic toxicology and biomonitoring (Dong et al., 

2019; Javed and Usmani, 2019). Micronucleus (MN) test is a very reliable tool to asses the 

genotoxic potential of any xenobiotics (Awasthi et al., 2019). MN formation in erythrocytes of 

fish by single and double strands break of DNA, and may also a result of the inappropriate 

DNA repair or failed DNA repair mechanism (Fenech, 2002). Assessment of oxidative stress 

reveals the redox state of the cell. To deal with enhanced Reactive oxygen species (ROS) in 

cell, defence mechanism works in which enzymatic- superoxide dismutase (SOD), catalase 

(CAT), Glutathione reductase (GR), and non-enzymatic antioxidant- reduced glutathione 

(GSH) assist to maintain the homeostasis in cell (Jifa et al., 2006). The oxidative stress 

generated DNA damage and alter different molecular mechanisms such as apoptosis, and 

autophagy in fish. The present study comprises of different techniques for assessing B[a]P 

toxicity and its deleterious effects in fish.  

Materials and methods 

Estimation of B[a]P in fish 

The B[a]P estimation in fish samples can be done by using High-performance liquid 

chromatography (HPLC) and Gas chromatography mass spectrometry GC-MS techniques:  

Estimation through HPLC  

In order to quantify B[a]P accumulation, fish samples can be obtained using the Soxhlet 

extraction method with a mixture of acetone and dichloromethane (1:1). The obtained extracts 

will be dried by anhydrous sodium sulfate and then concentrated through a rotary evaporator. 

The concentrated extract will then be diluted with 10 mL of hexane and then further 

concentrated with 2 mL of hexane. The prepared extracts will be used for the analyses of B[a]P 

in fish tissues using water–acetonitrile solvent organization on HPLC equipped with pump and 

UV–vis detector. C-18 column will be preferred for the B[a]P detection. The flow rate can be 

adjusted to 1 mL/min. The B[a]P can be recognized by retention time compared with reference 

to the B[a]P standards (Malik et al., 2008).  
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Estimation through GC-MS  

The lyophilized fish samples will be used for B[a]P determination through GC-MS. For 

GC-MS analysis, carrier gas-Helium and the column pressure-10 psi will be maintained to 

provide an estimated flow rate of 1 ml/min. The injector lines at 290 °C and transfer lines at 

250 °C will be maintained. The temperature of columns will be maintained at °C for 4 min, 

ramped at 300 °C at a range of 10 °C/min. The mass spectrometer will be employed in electron 

ionization manner and all the spectra will be obtained with a huge range of m/z 50–400 and 

automatic gain control (AGC) (Giri et al., 2013). 

Experimental design on fish 

 Freshwater live of test model will be collected and brought to the laboratory in an 

aerated medium (Trivedi et al., 2021). During the acclimation, fish will be kept in ventilated 

glass aquaria and fed with food pellets twice a day. All the necessary physiochemical properties 

(pH, Temperature, DO, Alkalinity, and Hardness) of aquaria water will be maintained. After 

the 15 days acclimatization, healthy specimens will be randomly distributed in all the 

experimental aquaria. The experimental groups were selected in triplicates. Sampling will be 

done at estimated time interval. Test parameters- Micronucleus test, ROS, biochemical activity 

(SOD, CAT, GSH and GR), histopahology and transcriptional analysis can be performed at 

each sampling duration by following the protocol of Trivedi et al., (2022).  

 

 
Figure 2: Effects of B[a]P. 

B[a]P estimation and its detrimental effects in fish 

The measurement of B[a]P and other PAHs in surface water, sediments and fish was 

performed by using HPLC from eight different locations of the river Gomti (India) (Malik et. 
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al., 2010 and Malik et al., 2008). Similarly, Palanikumar et al., 2012 investigated the 

accumulation of B[a]P through GC-MS after its sub-lethal exposure in fish, Chanos chanos.  

B[a]P when enters into the fish, different metabolites formed which cause ROS production via 

redox cycle. Qi and Tang, (2020) also examined the ROS production after the 96h exposure of 

B[a]P in mussel Mytilus coruscus. Increased ROS production may cause extreme oxidative 

stress, to deal with this oxidative stress an antioxidant defense system works with different 

enzymatic (SOD, CAT and GR) and non-enzymatic (GSH) antioxidants. Antioxidant-SOD acts 

as first line defence against oxidative stress caused due to B[a]P and catalyzes excess 

superoxide radicals into H2O2 (Gravato and Guilhermino, 2009; Guo et al., 2021). SOD 

induction was also found in different fish species exposed to waterborne contaminant B[a]P 

(Dellali et al., 2021; Qi and Tang, 2020). Further, CAT enzyme breaks H2O2 into water and 

augmented CAT activity designates the higher concentration of H2O2 in cell. Rodrigues et al., 

(2022) also measured the increased activity of CAT enzyme in tissues of Scrobicularia plana 

after B[a]P exposure. GR maintains the redox potential of cell by regenerating GSH from 

GSSG. Increased level of GR was documented in tissues of mussel Mytilus coruscus exposed 

to B[a]P (Qi and Tang, 2020). A non-enzymatic antioxidant-GSH was also estimated in 

different body parts of fish (Jifa et al., 2006; Santos and Bueno, 2020). 

Studies clarified that the B[a]P was found genotoxic for the fish. It upsurges the frequency of 

MN formation in cells. After the acute exposure of B[a]P, raised MN frequency were detected 

in rainbow trout and common carp (Kim and Hyun, 2006). Another study established that B[a]P 

raised the MN formation in milkfish-Chanos chanos after 96 h of experimental duration 

(Palanikumar et al., 2012).  

Histopathological results may help to examine a range of anomalies in the liver and 

kidney tissues of fish. Numerous studies have been repored the different histological 

modifications tissues of fish after B[a]P exposure (Briaudeau et al., 2021; Carlson et al., 2004; 

Esmaeilbeigi et al., 2021; Woo, 2022). 

Transcriptional analysis helps to quantify the expression of specific genes. Various 

studies have been done on mRNA expression  in different organs exposed to B[a]P. In a study, 

up-regulation of tumor suppressor gene-p53 was found involved in autophagy by down-

regulating the mTOR gene after B[a]P exposure which is investigated by Lin et al., (2016) and 

Sforzini et al., (2017).  
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Indeed, more studies need to be performed to evaluate the toxic ability of B[a]P in 

different tissues of fish based on MN, antioxidant enzymes, transcriptional analyses, and other 

related biomarkers.  

 

Conclusion 

The present study reveals the toxic potential of B[a]P in fish and its deleterious effects 

on genotoxicity, oxidative stress, histopathological impressions and transcriptional analysis in 

fish. The study also discloses the assessment of B[a]P accumulation and its genotoxic ability 

in fish. B[a]P is also able to accumulate in fish and cause oxidative stress by producing ROS. 

Thus, the study helps in understanding the toxic impact of B[a]P in fish and performing the 

future studies on aquatic creatures.  Increasing concentration of B[a]P causing major health 

risk to aquatic organisms. 
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